OverIQ.com

C Program to find the transpose of a matrix

Last updated on July 27, 2020


The following is a C program to find the transpose of a matrix:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
/********************************************
* Program to find the transpose of a matrix
********************************************/

#include<stdio.h> // include stdio.h
#define ROW 2
#define COL 4

int main()
{
    int i, j, mat[ROW][COL], trans_mat[COL][ROW];

    printf("Enter matrix: \n");

    // input matrix
    for(i = 0; i < ROW; i++)
    {
        for(j = 0; j < COL; j++)
        {            
            scanf("%d", &mat[i][j]);
        }        
    }

    /* create transpose matrix by  
     * switch entries
     */ 
    for(i = 0; i < ROW; i++)
    {
        for(j = 0; j < COL; j++)
        {
            trans_mat[j][i] = mat[i][j];
        }                
    }       

    printf("\nTranspose matrix: \n");

    // print transpose matrix
    for(i = 0; i < COL; i++)
    {
        for(j = 0; j < ROW; j++)
        {
            printf("%d ", trans_mat[i][j]);
        }        

        printf("\n");
    }

    // signal to operating system everything works fine
    return 0;
}

Expected Output:

1
2
3
4
5
6
7
8
9
Enter matrix: 
1 2 3 4
5 6 7 8

Transpose matrix: 
    1     5 
    2     6 
    3     7 
    4     8

How it works #

Let A be a matrix of size m x n, then the matrix obtained by interchanging the rows and columns is called the Transpose of A.

The transpose of a matrix is denoted by \(A^T\) . For example:

\[
A = \left(\begin{array}{cc}1 & 2\\3 & 4\\5 & 6\end{array}\right)
\]

then

\[
A^T = \left(\begin{array}{ccc}1 & 3 & 5\\2 & 4 & 6\end{array}\right)
\]

Here is how the program works:

  1. The first for loop (lines 16-22) asks the user to input the matrix.
  2. The second for loop (lines 27-33) creates the transpose matrix by interchanging rows with columns.
  3. The third for loop (lines 38-46) prints the transpose of a matrix.

Recommended Reading: